Our research focuses on the control of hand and arm movement by the brain and spinal cord. Multiple muscles needed to be activated in appropriate patterns for executing intended behaviors. How are these motor patterns generated? Every behavior generates abundant sensory flow that activates cells in the central nervous system. How does the brain and spinal cord translate this sensory information into the command for upcoming movements? We are applying a multidisciplinary approach to these questions. We record the activity of individual neurons, multiple neurons, localized groups of neurons (local field potentials), and the activity of many skeletal muscles in behaving macaque monkeys during performance of different motor behaviors. Neuron recordings are done in conjunction with stimulation and correlational techniques to identify inputs and outputs. Neurophysiological approaches of this kind will allow us to describe the mechanism of sensory-motor transformation at a cellular level. Along with basic research, we are also attempting to restore arm and finger movements by stimulating the spinal cord. Developing a chronically implantable electrode and appropriate patterns of stimulation will allow people with spinal injuries to generate naturalistic movements of their own limb. Finally, we are developing new genetic tools to address clinically challenging questions. Generating a genetically-manipulated monkey may allow us to understand the mechanisms of many neurological disorders from cellular to behavioral levels. Application of optogenetic technology in the primate brain may allow us to manipulate abnormal brain activity with finer resolution.