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Abstract

Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential
surrogate marker for metabolic changes during neuronal excitation. These changes in lactate
levels can result in decreased brain pH, which has been implicated in patients with various
neuropsychiatric disorders. We previously demonstrated that such alterations are commonly
observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a
shared endophenotype among these disorders rather than mere artifacts due to medications
or agonal state. However, there is still limited research on this phenomenon in animal
models, leaving its generality across other disease animal models uncertain. Moreover, the
association between changes in brain lactate levels and specific behavioral abnormalities
remains unclear. To address these gaps, the International Brain pH Project Consortium
investigated brain pH and lactate levels in 109 strains/conditions of 2,294 animals with
genetic and other experimental manipulations relevant to neuropsychiatric disorders.
Systematic analysis revealed that decreased brain pH and increased lactate levels were
common features observed in multiple models of depression, epilepsy, Alzheimer’s disease,
and some additional schizophrenia models. While certain autism models also exhibited
decreased pH and increased lactate levels, others showed the opposite pattern, potentially
reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale
behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that
poor working memory performance was predominantly associated with increased brain
lactate levels. Importantly, this association was confirmed in an independent cohort of
animal models. Collectively, these findings suggest that altered brain pH and lactate levels,
which could be attributed to dysregulated excitation/inhibition balance, may serve as
transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by
cognitive impairment, irrespective of their beneficial or detrimental nature.

eLife assessment

The manuscript offers useful descriptive insights into the potential influence of
whole-brain lactate and pH levels on the manifestation of behavioral phenotypes
seen in diverse animal models of neuropsychiatric disorders. However, reviewers
have raised concerns about the potential loss of specificity in capturing regional and
cell-type-specific effects when relying solely on whole-brain analysis methods. While
the evidence supporting the conclusions is largely solid, the robustness of these
conclusions could be enhanced by the inclusion of additional data and further
analysis.

Introduction

Neuropsychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), major depressive
disorder (MDD), autism spectrum disorder (ASD), and Alzheimer’s disease (AD), are relatively
common. More than one-third of the population in most countries is diagnosed with at least one of
these disorders at some point in their life (WHO International Consortium in Psychiatric
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Epidemiology, 2000     ). Although these diseases are characterized by different clinical diagnostic
categories, they share some biological features, such as genetic mutations, molecular changes, and
brain activity alterations (Argyelan et al., 2014     ; Cardno and Owen, 2014     ; Douaud et al.,
2014     ; Forero et al., 2016     ; Hall et al., 2015     ), suggesting a common underlying biological
basis. Accumulating evidence suggests that metabolic changes in the brain are common to several
neuropsychiatric disorders. Increased levels of lactate, an end product of the glycolysis pathway,
have been observed in the brains of patients with SZ, BD, ASD, MDD, and epilepsy (Dager et al.,
2004     ; Goh et al., 2014     ; Greene et al., 2003     ; Halim et al., 2008     ; Machado-Vieira et al.,
2017     ; Prabakaran et al., 2004     ; Rossignol and Frye, 2012     ; Rowland et al., 2016     ; Soeiro-de-
Souza et al., 2016     ; Sullivan et al., 2019     ). Brain lactate levels have been observed to rise during
neuronal excitation induced by somatic stimuli (Koush et al., 2019     ; Mangia et al., 2007     ) and
epileptic seizures (During et al., 1994     ; Lazeyras et al., 2000     ; Najm et al., 1997     ; Siesjö et al.,
1985     ). This increase is accompanied by a concurrent elevation in the excitatory
neurotransmitter glutamate (Fernandes et al., 2020     ; Schaller et al., 2014     , 2013     ).
Additionally, lactate has been found to increase the excitability of several populations of neurons
(Magistretti and Allaman, 2018     ). The presence of increased brain lactate levels aligns with the
neuronal hyperexcitation hypothesis proposed for neuropsychiatric disorders, such as SZ (Heckers
and Konradi, 2015     ; Whitfield-Gabrieli et al., 2009     ), BD (Chen et al., 2011     ; Mertens et al.,
2015     ), and AD (Bi et al., 2020     ; Busche and Konnerth, 2015     ).

Increased lactate levels decrease tissue pH, which may also be associated with deficits in brain
energy metabolism (Prabakaran et al., 2004     ). Lactate is a relatively strong acid and is almost
completely dissociated into H+ ions and lactate anions at cellular pH (Siesjö, 1985     ).
Furthermore, H+ ions are one of the most potent intrinsic neuromodulators in the brain in terms
of concentration and thus play an important role in the control of gene expression (Hagihara et al.,
2023     ; Mexal et al., 2006     ; Mistry and Pavlidis, 2010     ) and cellular functions of neurons and
glial cells (Chesler, 2003     ; Kaila and Ransom, 1998     ). Recent meta-analyses have confirmed
decreased brain pH and increased lactate levels in patients with SZ and BD (Dogan et al., 2018     ;
Pruett and Meador-Woodruff, 2020     ). These changes have also been observed in the brains of AD
patients (Lehéricy et al., 2007     ; Liguori et al., 2016     , 2015     ; Lyros et al., 2019     ; Mullins et al.,
2018     ; Paasila et al., 2019     ; Youssef et al., 2018     ). However, the observed phenomena are
potentially confounded by secondary factors inherent to human studies, such as the
administration of antipsychotic drugs (Halim et al., 2008     ). Agonal experiences associated with
these disorders may also complicate the interpretation of postmortem study results (Li et al.,
2004     ; Tomita et al., 2004     ; Vawter et al., 2006     ). Although some human studies have suggested
that medication use is not a major factor in regulating brain pH and lactate levels (Dager et al.,
2004     ; Halim et al., 2008     ; Kato et al., 1998     ; Machado-Vieira et al., 2017; Soeiro-de-Souza et al.,
2016     ), it is technically difficult to exclude the effects of other potential confounding factors in
such studies, especially those using postmortem brain samples. Animal models are exempt from
such confounding factors and may therefore help confirm whether increased brain lactate levels
and decreased pH are involved in the pathophysiology of neuropsychiatric and neurodegenerative
disorders.

Recently, we reported that increased lactate levels and decreased pH are commonly observed in
the postmortem brains of five genetic mouse models of SZ, BD, and ASD (Hagihara et al., 2018     ).
All mice used in the study were drug-naïve, with equivalent agonal states, postmortem intervals,
and ages within each strain. An in vivo magnetic resonance spectroscopy (MRS) study showed
increased brain lactate levels in another mouse model of SZ (das Neves Duarte et al., 2012     ),
suggesting that this change is not a postmortem artifact. Thus, these findings in mouse models
suggest that increased lactate levels and decreased pH reflect the underlying pathophysiology of
the disorders and are not mere artifacts. However, knowledge of brain lactate and especially pH in
animal models of neuropsychiatric and neurodegenerative diseases is limited to a small number
of models. In particular, few studies have examined brain pH and lactate levels in animal models
of MDD, epilepsy, and AD. In addition, few studies other than ours (Hagihara et al., 2018     ) have
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examined the brain pH and lactate levels in the same samples in relevant animal models.
Systematic evaluations using the same platform have not yet been performed. Therefore, given the
availability of established relevant animal models, we launched a research project named the
“Brain pH Project” (Hagihara et al., 2021b     ). The aim of this project was to improve our
understanding of changes in brain pH, particularly in animal models of neuropsychiatric and
neurodegenerative disorders. We have extended our previous small-scale study (Hagihara et al.,
2018     ) by using a greater variety of animal models of neuropsychiatric disorders and
neurodegenerative disorders, including not only SZ, BD, and ASD, but also MDD, epilepsy, AD, and
peripheral diseases or conditions comorbid with psychiatric disorders (e.g., diabetes mellitus
(DM), colitis, and peripheral nerve injury). These animal models included 109 strains or conditions
of mice, rats, and chicks with genetic modifications, drug treatments, and other experimental
manipulations such as exposure to physical and psychological stressors. Of these, 65
strains/conditions of animal models constituted an exploratory cohort (Hagihara et al., 2021b     )
and 44 constituted a confirmatory cohort used to test the hypothesis developed in the initial
exploratory studies. We also implemented a statistical learning algorithm that integrated large-
scale brain lactate data with comprehensive behavioral measures covering a broad range of
behavioral domains (Takao and Miyakawa, 2006     ) (e.g., working memory, locomotor activity in a
novel environment, sensorimotor gating functions, anxiety-like behavior, and depression-like
behavior) to identify behavioral signatures intrinsically related to changes in brain lactate levels.
Importantly, by replicating these studies separately in a distinct cohort, we obtained reliable
results regarding the potential functional significance of brain lactate changes in animal models of
neuropsychiatric disorders.

Results

Altered brain pH and lactate levels in animal models
of neuropsychiatric and neurodegenerative disorders
The strains/conditions of animals analyzed in this study and the related diseases/conditions are
summarized in Table S1. The raw pH and lactate data and detailed information about the animals
(age, sex, and storage duration of tissue samples) are shown in Table S2.

Of the 65 strains/conditions in the exploratory cohort, 26 showed significant changes in pH (6
increased, 20 decreased) and 24 showed significant changes in lactate levels (19 increased, 5
decreased) compared with the corresponding control animals (P < 0.05; Figure 1A     , Table S3). No
strain/condition of animals showed a concomitant significant increase or decrease in pH and
lactate levels. Effect size-based analysis of 65 strains/conditions showed a significant negative
correlation between pH and lactate levels at the strain/condition level (r = -0.86, P = 8.45 × 10-20;
Figure 1A     ). Furthermore, the Z-score-based meta-analysis of 1,239 animals in the exploratory
cohort revealed a highly significant negative correlation between pH and lactate levels at the
individual animal level (r = -0.62, P = 7.54 × 10-135; Figure 1B     ). These results support the idea
that decreased brain pH is due to increased lactate levels in pathological conditions associated
with neuropsychiatric disorders.

Poor working memory performance
predicts higher brain lactate levels
Most of the animal models analyzed have shown a wide range of behavioral abnormalities, such
as deficits in learning and memory, increased depression- and anxiety-like behaviors, and
impaired sensorimotor gating. Thereafter, with our comprehensive lactate data, we investigated
the potential relationship between lactate changes and behavioral phenotypes in animal models.
To this end, we examined whether behavioral patterns could predict brain lactate levels by
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Figure 1.

Increased brain lactate levels correlated with decreased
pH are associated with poor working memory.

(A) Venn diagrams show the number of strains/conditions of animal models with significant changes (P < 0.05 compared with
the corresponding controls) in brain pH and lactate levels in an exploratory cohort. Scatter plot shows the effect size-based
correlations between pH and lactate levels of 65 strains/conditions of animals in the cohort. (B) Scatter plot showing the z-
score-based correlations between pH and lactate levels of 1,239 animals in the cohort. A z-score was calculated for each
animal within the strain/condition and used in this study. (C) Schematic diagram of the prediction analysis pipeline. Statistical
learning models with leave-one-out cross-validation (LOOCV) were built using a series of behavioral data to predict brain
lactate levels in 24 strains/conditions of mice in an exploratory cohort. (D) The scatter plot shows significant correlations
between predicted and actual lactate levels. (E) Feature preference for constructing the model to predict brain lactate levels.
Bar graphs indicate the selected frequency of behavioral indices in the LOOCV. Line graph indicates absolute correlation
coefficient between brain lactate levels and each behavioral measure of the 24 strains/conditions of mice. r, Pearson’s
correlation coefficient. (F–H) Scatter plot showing correlations between actual brain lactate levels and measures of working
memory (correct responses in maze test) (F), the number of transitions in the light/dark transition test (G), and the
percentage of immobility in the forced swim test (H).
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applying a statistical learning algorithm to reveal intrinsic associations between brain chemical
signatures and behavior. Of the 65 animal models, we collected comprehensive behavioral data
from 24 mouse models available from public sources (e.g., published papers and database
repositories) and in-house studies (Table S4). We constructed an effect-size-based model to predict
brain lactate levels from behavioral data using the leave-one-out cross-validation (LOOCV) method
(Figure 1C     , Table S5). Statistical evaluation of the predictive accuracy of the model revealed a
significant correlation between the actual and predicted brain lactate levels (r = 0.79, P = 4.17×10-6;
Figure 1D     ). The calculated root mean square error (RSME) was 0.68. These results indicate that
behavioral measures have the potential to predict brain lactate levels in individual models.

Prediction analysis was implemented to evaluate the behavioral measures that were most useful
in characterizing the brain lactate levels of the individual strains. The prediction algorithm
identified behavioral signatures associated with changes in brain lactate levels by weighting the
behavioral measures according to their individual predictive strengths. Thus, we identified
behavioral measures associated with changes in brain lactate levels by examining the weighted
behavioral measures used for prediction in linear regression. Three out of the nine behavioral
measures were selected to build a successful prediction model, and an index of working memory
was the top selected measure (Figure 1E     ). According to a simple correlation analysis, working
memory measures (correct responses in the maze test) were significantly negatively correlated
with brain lactate levels (r = -0.76, P = 1.93 × 10-5; Figure 1F     ). The other two indices used in the
successful prediction model did not show significant correlations with brain lactate levels
(number of transitions in the light/dark transition test, r = 0.13, P = 0.55, Figure 1G     ; or
percentage of immobility in the forced swim test, r = -0.28, P = 0.19, Figure 1H     ). Scatter plots of
other behavioral indices are shown in Figure S1. Behavioral indices with higher correlation
coefficients with actual lactate levels were not necessarily preferentially selected to construct the
prediction model (Figure 1E     ). These results suggest that higher brain lactate levels are
predominantly linearly related to poorer performance in working memory tests in mouse models
of neuropsychiatric disorders. Lactate levels had a V-shape-like relationship with the number of
transitions in the light/dark transition test (Figure 1G     ) and the percentage of open-arm stay
time in the elevated-plus maze test (Figure S1), which are indices of anxiety-like behavior. This
suggests that increased brain lactate levels may also be associated with changes in anxiety-like
behaviors, regardless of the direction of the change (increase or decrease).

Validation studies in an independent confirmatory cohort
In a confirmatory cohort consisting of 44 strains/conditions of animal models, 11
strains/conditions showed significant changes in pH (2 increased, 9 decreased) and 11 in lactate
levels (10 increased, 1 decreased) compared with the corresponding controls (P < 0.05; Figure
2A     , Table S3). As observed in the exploratory cohort, there were highly significant negative
correlations between brain pH and lactate levels at both the strain/condition (r = -0.78, P = 4.07 ×
10-10; Figure 2A     ) and individual levels (r = -0.52, P = 1.13 × 10-74; Figure 2B     ) in this
confirmatory cohort.

We then tested the hypothesis developed in the exploratory study that behavioral outcomes
predict brain lactate levels. A priori power analysis based on an exploratory study (r = 0.79, Figure
1D     ) estimated that at least 18 strains/conditions of animals would be required to statistically
confirm the results at a level of α = 0.01, |ρ| = 0.79, 1–β = 0.95 (Figure S3). Of the 44
strains/conditions of animals in the confirmatory cohort, we collected comprehensive behavioral
data from 27 mouse strains from public sources (e.g., published papers and the Mouse Phenotype
Database) and unpublished in-house studies (Table S4) that met the criteria for the
aforementioned a priori power analysis. Cross-validation analysis, performed in the same manner
as in the exploratory study, showed that behavioral patterns could predict brain lactate levels in
the confirmatory cohort (r = 0.55, P = 3.19 × 10-3; Figures 2C      and 2D     ). An RMSE value of 0.70
suggests that the prediction accuracy was comparable between theexploratory and confirmatory
cohorts (0.68 vs. 0.70, respectively). We found that working memory measures (correct responses
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Figure 2.

Studies in an independent confirmatory cohort validate the negative correlation of brain
lactate levels with pH and the association of increased lactate with poor working memory.

(A) Venn diagrams show the number of strains/conditions of animal models with significant changes (P < 0.05 compared with
the corresponding controls) in brain pH and lactate levels in a confirmatory cohort. Scatter plot shows the effect size-based
correlations between pH and lactate levels of 44 strains/conditions of animals in the cohort. (B) Scatter plot showing the z-
score-based correlations between pH and lactate levels of 1,055 animals in the cohort. (C) Statistical learning models with
leave-one-out cross-validation (LOOCV) were built using a series of behavioral data to predict brain lactate levels in 27
strains/conditions of mice in the confirmatory cohort. (D) The scatter plot shows significant correlations between predicted
and actual lactate levels. (E) Feature preference for constructing the model to predict brain lactate levels. Bar graphs indicate
the selected frequency of behavioral indices in the LOOCV. Line graph indicates absolute correlation coefficient between
brain lactate levels and each behavioral index of the 27 strains of mice. r, Pearson’s correlation coefficient. (F–H) Scatter plots
showing correlations between actual brain lactate levels and working memory measures (correct responses in the maze test)
(F), the acoustic startle response at 120 dB (G), and the time spent in dark room in the light/dark transition test (H).
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in the maze test) were the most frequently selected behavioral measures for constructing a
successful prediction model (Figure 2E     ), which is consistent with the results of the exploratory
study (Figure 1E     ). However, other behavioral measures were selected at different frequencies
(Figure 2E     ). Simple correlation analyses showed that working memory measures were
negatively correlated with brain lactate levels (r = -0.76, P = 6.78 × 10-6; Figure 2F     ). No
significant correlation with lactate levels was found for the acoustic startle response (r = -0.26, P =
0.21; Figure 2G     ) or the time spent in the dark room in the light/dark transition test (r = 0.27, P =
0.19; Figure 2H     ), which were the second and third behavioral measures selected in the
prediction model (Figure 2E     ). Again, behavioral indices with higher correlation coefficients
were not necessarily preferentially selected to construct the prediction model (Figure 2E     ).

Clustering of 109 strains/conditions of animal models
based on changes in brain pH and lactate levels
Combining the exploratory and confirmatory cohorts (109 strains/conditions in total), 37
strains/conditions showed significant changes in pH (8 increased, 29 decreased) and 35 showed
significant changes in lactate (29 increased, 6 decreased) compared to the corresponding controls
(P < 0.05; Figure S5A, Table S3). Highly significant negative correlations were observed between
brain pH and lactate levels at both the strain/condition (r = -0.80, P = 6.99 × 10-26; Figure S5A) and
individual levels (r = -0.58, P = 4.16 × 10-203; Figure S5B), to a greater extent than observed in each
cohort. The contribution ratio of lactate to pH, calculated based on the regression coefficient in a
linear regression model, was 33.2% at the individual level, suggesting a moderate level of
contribution.

In the prediction analysis, behavioral patterns were able to predict brain lactate levels in the
combined cohort (51 strains/conditions), as expected (Figures S5C and S5D, r = 0.72, P = 3.13 × 10-9).
Furthermore, behavioral patterns predicted brain pH (Figures S5F and S5G, r = 0.62, P = 9.92 × 10-

7). In both the lactate and pH prediction models, working memory measures were among the most
weighted predictors (Figures S5E and S5H). Working memory measures were significantly
negatively correlated with brain lactate levels and positively correlated with pH (Figure S6).
Moreover, the number of transitions in the light/dark transition test and the percentage of open
arm stay time in the elevated-plus maze test showed a V-shape-like relationship with lactate levels
(Figure S6).

Hierarchical clustering based on effect size roughly classified all 109 strains/conditions of animals
into four groups: low pH/high lactate group, high pH/low lactate group, moderate-high
pH/moderate-low lactate group, and a group with minimal to no changes in pH or lactate. These
groups consisted of 30, 2, 15, and 62 strains/conditions of animals, respectively (Figure S7), where
“high” and “low” indicate higher and lower pH and lactate levels in the mutant/experimental
animals relative to the corresponding wild-type/control animals, respectively. For example, the
low pH/high lactate group included SZ model Nrgn KO mice, SZ/intellectual disability (ID) models
Ppp3r1 KO mice and Hivep2 (also known as Shn2) KO mice, AD model APP-J20 Tg mice, ASD model
Chd8 KO mice, and social defeat stress-induced depression model mice. Chicks exposed to isolation
stress showed decreased brain pH and were included in this group, suggesting that changes in
brain pH in response to stress are an interspecies phenomenon. The high pH/low lactate group
and moderate-high pH/moderate-low lactate group included mouse models of ASD or
developmental delay, such as Shank2 KO, Fmr1 KO, BTBR, Stxbp1 KO, Dyrk1 KO, Auts2 KO, and 15q
dup mice (Table S1, Figure S7).
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Effects of age, sex, and storage
duration on brain pH and lactate levels
There was variation among the strains/conditions of the animal models studied with respect to age
at sampling, sex, and storage duration of the tissues in the freezer prior to measurements (Table
S2). We tested the potential effects of these three factors on the brain pH and lactate levels in
samples from wild-type and control rodents. Multivariate linear regression analysis using raw pH
values showed that storage duration, but not age or sex, was a significant covariate of brain pH
(Figure S8A). None of these three factors covaried with the raw lactate values. Raw pH values were
significantly positively correlated with storage duration (r = 0.11, P = 0.00060; Figure S8D) but not
with age (r = 0.038, P = 0.22; Figure S8B). No significant correlation was observed between the raw
lactate values and age (r = 0.036, P = 0.24) or storage duration (r = 0.034, P = 0.29) (Figures S8C and
S8E). There were no significant differences in pH (P = 0.42) or lactate values (P = 0.22) between
female and male rodents (Figures S8F and S8G).

Discussion

We performed a large-scale analysis of brain pH and lactate levels in 109 animal models of
neuropsychiatric disorders, which revealed the diversity of brain energy metabolism among these
animal models. The key findings of this study are as follows: 1) the generality of changes in brain
pH and lactate levels across a diverse range of disease models, and 2) the association of these
phenomenon with specific behaviors. First, this large-scale animal model study revealed that
alterations in brain pH/lactate levels can be found in approximately 30% of the animal models
examined. This generality suggests a common basis in the neuropathophysiology of not only
schizophrenia, bipolar disorder, and ASD, but also of Alzheimer’s disease (APP-J20 Tg mice),
Down’s syndrome (Ts1Cje mice), Mowat–Wilson syndrome (Zeb2 KO mice), Dravet syndrome
(Scn1a-A1783V KI mice), tuberous sclerosis complex (Tsc2 KO mice), Ehlers-Danlos syndrome
(Tnxb KO mice), and comorbid depression in diabetes (streptozotocin-treated mice) and colitis
(dextran sulfate sodium-treated mice). Secondly, this study demonstrated that these phenomenon
in the brain are primarily associated with working memory impairment over depression- and
anxiety-related behaviors. Importantly, developing these hypotheses in an exploratory cohort of
animals and confirming them in an independent cohort within this study enhances the robustness
and reliability of our hypotheses.

Some strains of mice that were considered models of different diseases showed similar patterns of
changes in pH and lactate levels. Specifically, the SZ/ID models (Ppp3r1 KO, Nrgn KO mice, and
Hivep2 KO mice), BD/ID model (Camk2a KO mice), ASD model (Chd8 KO mice), depression models
(mice exposed to social defeat stress, corticosterone-treated mice, and Sert KO mice), and other
disease models mentioned above commonly exhibited decreased brain pH and increased lactate
levels. BD model Polg1 Tg mice showed no differences in pH or lactate levels. Interestingly,
however, other BD model Clock mutant mice and ASD models, such as Shank2 KO (Won et al.,
2012     ), Fmr1 KO, Dyrk1 KO (Raveau et al., 2018     ), Auts2 KO (Hori et al., 2015     ), and 15q dup
mice (Nakatani et al., 2009     ), were classified into a group with opposite changes (a group with
decreased lactate levels and increased pH). Animal models with different patterns of changes in
brain pH and lactate levels may represent subpopulations of patients or specific disease states
(Rossignol and Frye, 2012     ). While increased brain lactate levels in neuropsychiatric conditions
are almost consistent in the literature, decreased lactate levels have also been found in a cohort of
patients with SZ (Beasley et al., 2009     ) and in the euthymic state of BD (Brady et al., 2012     ). Our
results from animal studies may also support the idea that patients classified into specific
neuropsychiatric disorders based on symptoms are biologically heterogeneous (Insel and
Cuthbert, 2015     ) from a brain energy metabolism perspective. Detecting changes in brain pH and
lactate levels, whether resulting in an increase or decrease due to their potential bidirectional
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alterations, using techniques such as MRS may help the diagnosis, subcategorization, and
identification of specific disease states of these biologically heterogeneous and spectrum
disorders, as has been shown for mitochondrial diseases (Lin et al., 2003     ).

Although previous studies have repeatedly reported that brain pH is decreased in SZ and BD
(Dogan et al., 2018     ; Hagihara et al., 2018     ; Pruett and Meador-Woodruff, 2020     ), little is
known about brain pH in MDD. Our present study demonstrated that decreased brain pH is a
common feature in several preclinical animal models of depression (e.g., mice exposed to social
defeat stress, corticosterone-treated mice, and Sert KO mice) and comorbid depression (DM mouse
model induced by streptozotocin treatment and colitis mouse model induced by dextran sulfate
sodium treatment). These findings raise the possibility that decreased brain pH associated with
increased lactate levels may be a common endophenotype in MDD, shared with other
neuropsychiatric disorders, and needs to be elucidated in future research.

While we analyzed 109 strains/conditions of animals, we included both those that are widely
recognized as animal models for specific neuropsychiatric disorders and those that are not. For
example, while interleukin 18 (Il18) KO mice and mitofusin 2 (hMfn2-D210V) Tg mice exhibited
changes in pH and lactate levels, the evidence that these genes are associated with specific
neuropsychiatric disorders is limited. However, these strains of mice exhibited behavioral
abnormalities related to neuropsychiatric disorders, such as depressive-like behaviors and
impaired working memory (Ishikawa et al., 2021     , 2019     ; Yamanishi et al., 2019     ).
Furthermore, these mice showed maturation abnormality in the hippocampal dentate gyrus and
neuronal degeneration due to mitochondrial dysfunction, respectively, suggesting conceptual
validity for utilization as animal models for neuropsychiatric and neurodegenerative disorders
(Burté et al., 2015     ; Cunnane et al., 2020     ; Hagihara et al., 2019     , 2013     ). In contrast, mice
with heterozygous KO of the synaptic Ras GTPase-activating protein 1 (syngap1), whose mutations
have been identified in human patients with ID and ASD, showed an array of behavioral
abnormalities relevant to the disorders (Komiyama et al., 2002     ; Nakajima et al., 2019     ), but did
not show changes in brain pH or lactate levels. Therefore, while changes in brain pH and lactate
levels could be transdiagnostic endophenotypes of neuropsychiatric disorders, they might occur
depending on the subpopulation due to the distinct genetic and environmental causes or specific
disease states in certain disorders.

The present animal studies revealed a strong negative correlation between brain pH and lactate
levels, which supports our previous findings from small-scale animal studies (Hagihara et al.,
2018     ). A negative correlation between brain pH and lactate levels was found in a human
postmortem study (Halim et al., 2008     ). These results suggest that brain lactate is an important
regulator of tissue pH (Prabakaran et al., 2004     ), although we cannot exclude the possibility that
other factors, such as neuronal activity-regulated production of carbon dioxide, another metabolic
acid, may also contribute to changes in brain pH (Chesler, 2003     ; Zauner et al., 1995     ).
Furthermore, the observed pH changes may be due to the dysregulation of neuronal (Li et al.,
2022     ; Pruett et al., 2023     ) and astroglial (Theparambil et al., 2020     ) mechanisms of H+ ion
transport and buffering to regulate intracellular and extracellular pH homeostasis, which should
be investigated in our model animals.

We observed no significant correlation between brain pH and age in the wild-type/control rodents.
In human studies, inconsistent results have been obtained regarding the correlation between
brain pH and age; some studies showed no significant correlation (Monoranu et al., 2009     ; Preece
and Cairns, 2003     ), whereas others showed a negative correlation (Forester et al., 2010     ;
Harrison et al., 1995     ). The effect of sex on brain pH has been inconsistent in human studies
(Monoranu et al., 2009     ; Preece and Cairns, 2003     ). Systematic analyses focusing on the effects
of age and sex on brain pH in animal models may help explain the inconsistency in human
studies.
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Our prediction analysis revealed that poorer working memory performance in animal models of
neuropsychiatric disorders may be predominantly associated with higher lactate levels, which
was reliably confirmed in an independent cohort. Higher lactate levels have been associated with
lower cognition in individuals with SZ (Rowland et al., 2016     ) and mild cognitive impairment
(Weaver et al., 2015     ). Based on these observations, abnormal accumulation of lactate would be
expected to have a negative impact on brain function, especially memory formation. However,
lactate production stimulated by learning tasks has been suggested to be a requisite for memory
formation. Lactate production by astrocytic glycogenolysis and its transport to neurons serves as
an energy substrate for neuronal activity and is referred to as astrocyte-neuron lactate shuttle
(ANLS). Animal studies have shown that pharmacological disruption of learning task-stimulated
lactate production and transport via the ANLS immediately before testing impairs memory
formation, as assessed by the plus-shaped maze spontaneous alteration task (testing short-term
memory) (Newman et al., 2011     ) and inhibitory avoidance task (testing long-term memory)
(Descalzi et al., 2019     ; Suzuki et al., 2011     ). Collectively, considering that brain lactate levels
increase during stimulation in a temporally (and spatially) restricted manner under physiological
conditions (Mangia et al., 2007     ; Schaller et al., 2014     ), pathologically sustained elevation of
brain lactate levels may have negative effects on brain functions, including memory processing,
although causality is unknown. Another possibility is that the reduced consumption of lactate for
energy production due to mitochondrial dysfunction in neurons may underlie impaired learning
and memory functions in disease conditions. Mitochondrial dysfunction is thought to lead to
lactate accumulation due to the insufficient capacity of mitochondrial metabolism to metabolize
the lactate produced (Dogan et al., 2018     ; Regenold et al., 2009     ; Stork and Renshaw, 2005     ).
Mitochondrial dysfunction has been consistently implicated in several neuropsychiatric disorders,
including SZ, BD, MDD, ASD, and AD (Holper et al., 2019     ; Manji et al., 2012     ; Pei and Wallace,
2018     ), among which working memory deficits are a common symptom (Millan et al., 2012     ). In
addition, increased lactate levels reflect neuronal activation (Hagihara et al., 2018     ). Thus,
activation in brain regions other than the frontal cortex, a brain region critical for working
memory (Andrés, 2003     ), interferes with working memory performance, as it has been proposed
that the activity of the core brain region may be affected by noise from the rest of the brain during
cognitive tasks in patients with SZ (Foucher et al., 2005     ). Moreover, increased lactate may have a
positive or beneficial effect on memory function to compensate for its impairment, as lactate
administration with an associated increase in brain lactate levels attenuates cognitive deficits in
human patients (Bisri et al., 2016     ) and rodent models (Rice et al., 2002     ) of traumatic brain
injury. In addition, lactate administration exerts antidepressant effects in a mouse model of
depression (Carrard et al., 2021     , 2016     ; Karnib et al., 2019     ; Shaif et al., 2018     ). Lactate has
also shown to promote learning and memory (Descalzi et al., 2019     ; Dong et al., 2017     ; Hayek et
al., 2019     ; Lu et al., 2019     ; Roumes et al., 2021     ; Suzuki et al., 2011     ), synaptic plasticity
(Herrera-López et al., 2020     ; Yang et al., 2014     ; Zhou et al., 2021     ), adult hippocampal
neurogenesis (Lev-Vachnish et al., 2019     ), and mitochondrial biogenesis and antioxidant defense
(Akter et al., 2023     ), while its effects on adult hippocampal neurogenesis and learning and
memory are controversial (Ikeda et al., 2021     ; Le-Niculescu et al., 2009     ; Wang et al., 2019     ).
Moreover, increased lactate levels may also be involved in behavioral changes other than memory
deficits, such as anxiety. The results of our previous study showed that increased brain lactate
levels were associated with altered anxiety-like behaviors in a social defeat stress model of
depression (Hagihara et al., 2021a     ). Further studies are needed to address these hypotheses by
chronically inducing deficits in mitochondrial function to manipulate endogenous lactate levels in
a brain region-specific manner and to analyze their effects on working memory. It is also
important to consider whether pH or lactate contributes more significantly to the observed
behavioral abnormalities.

There exists a close relationship between neuronal activity and energy metabolism in the brain. In
vitro studies have indicated that the uptake of glutamate into astrocytes stimulates glycolysis and
lactate production following neuronal excitation (Pellerin and Magistretti, 1994     ). However, an in
vivo investigation on cerebellar Purkinje cells has demonstrated that lactate is produced in
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neurons in an activity-dependent manner, suggesting that astrocytes may not be the sole supplier
of lactate to neurons (Caesar et al., 2008     ). Shifts in the neuronal excitation and inhibition (E/I)
balance toward excitation of specific neural circuits have been implicated in the pathogenesis and
pathophysiology of various neuropsychiatric disorders, including SZ, BD, ASD, AD, and epilepsy
(Brealy et al., 2015     ; Busche and Konnerth, 2016     ; Marín, 2012     ; Nelson and Valakh, 2015     ;
Yizhar et al., 2011     ). An imbalance favoring excitation could lead to increased energy
expenditure and potentially heightened glycolysis. Such alterations in energy metabolism may be
associated with increased lactate production. Indeed, in our previous studies using Hivep2 KO
mice, characterized by increased brain lactate levels and decreased pH, we observed elevated
glutamate levels and upregulated expression of many glycolytic genes in the hippocampus
(Hagihara et al., 2018     ; Takao et al., 2013     ). Furthermore, Actl6b (also known as Baf53b) KO
mice (Wenderski et al., 2020     ) and APP-J20 Tg mice (Bomben et al., 2014     ; Brown et al., 2018     ;
Palop et al., 2007     ) exhibited neuronal hyperexcitation, as evidenced by increased expression of
activity-regulated genes and epileptiform discharges recorded by electroencephalography. Dravet
syndrome model mice with a clinically relevant SCN1A mutation (Scn1a-A1783V knock-in mice)
(Ricobaraza et al., 2019     ) and mutant Snap25 (S187A) knock-in mice (Kataoka et al., 2011     )
developed convulsive seizures. These findings suggest that neuronal hyperexcitation may be one
of the common factors leading to increased lactate production and decreased pH in the brain. We
consider that alterations in brain pH and lactate levels occur, whether they are a direct and
known consequence or indirect and unknown ones of genetic modifications. We have proposed
that genetic modifications, along with environmental stimulations, may induce various changes,
which subsequently converge toward specific endophenotypes in the brain, such as neuronal
hyperexcitation, inflammation, and maturational abnormalities (Hagihara et al., 2013     ; Yamasaki
et al., 2008     ). The findings of this study, demonstrating the commonality of alterations in brain
pH and lactate levels, align with this concept and suggest that these alterations could serve as
brain endophenotypes in multiple neuropsychiatric disorders.

The major limitations of this study include the absence of analyses specific to brain regions or cell
types and the lack of functional investigations. Because we used whole brain samples to measure
pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate
levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each
strain/condition of the models. It is known that certain molecular expression profiles and
signaling pathways display brain region-specific alterations, and in some cases, even exhibit
opposing changes in neuropsychiatric disease models (Floriou-Servou et al., 2018     ; Hosp et al.,
2017     ; Reim et al., 2017     ). Indeed, brain region-specific increases in lactate levels were
observed in human patients with ASD in an MRS study (Goh et al., 2014     ). Furthermore, while
increased lactate levels were observed in whole-brain measurements in mice with chronic social
defeat stress (Figure S7) (Hagihara et al., 2021a     ), decreased lactate levels were found in the
dorsomedial prefrontal cortex (Yao et al., 2023     ). Additionally, it has been reported that the basal
intracellular pH differs between neurons and astrocytes (lower in astrocytes than in neurons), and
their responsiveness to conditions simulating neural hyperexcitation and the metabolic acidosis in
terms of intracellular pH also varies (Raimondo et al., 2016     ; Salameh et al., 2017     ). It would
also be possible that the brain region/cell type-specific changes may occur even in animal models
in which undetectable changes were observed in the present study. This could be due to the
masking of such changes in the analysis when using whole-brain samples. Given the assumption
that the brain regions and cell types responsible for pH and lactate changes vary across different
strains/conditions, comprehensive studies are needed to thoroughly examine this issue for each
animal model individually. This can be achieved through techniques such as evaluating
microdissected brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor
electrodes (Marunaka et al., 2014     ; Newman et al., 2011     ) and MRS (Davidovic et al., 2011     ).
Subsequently, based on such findings, it is also necessary to conduct functional analyses for each
model animal by manipulating pH or lactate levels in specific brain regions/cell types and
evaluating behavioral phenotypes relevant to neuropsychiatric disorders.
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We also note that there are several potential confounding factors in this study. The brain samples
analyzed in this study contained cerebral blood. The cerebral blood volume is estimated to be
approximately 20–50 μl/g in human and feline brains (Leenders et al., 1990     ; van Zijl et al.,
1998     ). When we extrapolate these values to murine brains, it would imply that the proportion
of blood contamination in the brain homogenates analyzed is 0.2–0.6%. Additionally, lactate
concentrations in the blood are two to three times higher than those in the brains of mice (Béland-
Millar et al., 2017     ). Therefore, even if there were differences in the amount of resident blood in
the brains between control and experimental animals, the impact of such differences on the
lactate measurements would likely be minimal. Other confounding factors include circadian
variation and locomotor activity before the brain sampling. Lactate levels are known to exhibit
circadian rhythm in the rodent cortex, transitioning gradually from lower levels during the light
period to higher levels during the dark period (Dash et al., 2012     ; Shram et al., 2002     ; Wallace et
al., 2020     ). The variation in the times of sample collection during the day was basically kept
minimized within each strain/condition of animals. However, the sample collection times were not
explicitly matched across the different laboratories, which may contribute to variations in the
baseline control levels of pH and lactate among different strains/conditions of animals (Table S3).
In addition, motor activity and wake/sleep status immediately before brain sampling can also
influence brain lactate levels (Naylor et al., 2012     ; Shram et al., 2002     ). These factors have the
potential to act as confounding variables in the measurement of brain lactate and pH in animals.

In conclusion, the present study demonstrated that altered brain pH and lactate levels are
commonly observed in animal models of SZ, BD, ID, ASD, AD, and other neuropsychiatric
disorders. These findings provide further evidence supporting the hypothesis that altered brain
pH and lactate levels are not mere artifacts, such as those resulting from medication confounding,
but are rather involved in the underlying pathophysiology of some patients with neuropsychiatric
disorders. Altered brain energy metabolism or neural hyper- or hypoactivity leading to abnormal
lactate levels and pH may serve as a potential therapeutic targets for neuropsychiatric disorders
(Pruett and Meador-Woodruff, 2020     ). Future studies are needed to identify effective treatment
strategies specific to sets of animal models that could recapitulate the diversity of brain energy
metabolism in human disease conditions. This could contribute to the development of treatments
for biologically defined subgroups of patients or disease states of debilitating diseases beyond
clinically defined boundaries.

Materials and methods

Experimental animals and ethical statement
The animals used in this study are listed in Table S1. Animal experiments were approved by the
Institutional Animal Care and Use Committee of Fujita Health University and the relevant
committee at each participating institution, based on the Law for the Humane Treatment and
Management of Animals and the Standards Relating to the Care and Management of Laboratory
Animals and Relief of Pain. Every effort was made to minimize the number of animals used.

Sample collection
Whole brain samples were collected by one of the following methods:

1. Call for collaborative research worldwide, e.g. by posting on the website of the relevant
scientific society (https://www.ibngs.org/news     ) and of our institute (http://www.fujita-
hu.ac.jp/~cgbb/en/collaborative_research/index.html), and by discussion on a preprint
server, bioRxiv (https://www.biorxiv.org/content/10.1101/2021.02.02.428362v2     ).

2. Ask specifically the researchers who have established animal models.
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3. Purchase or transfer mouse strains of interest from the repository (e.g., The Jackson
Laboratory [https://www.jax.org/     ], RIKEN BioResource Research Center [https://web.brc
.riken.jp/en/?doing_wp_cron=1612919495.41057896614074707031      25]).

4. Rederivation of mouse strains of interest from frozen embryo stocks.

Sampling and handling of brain samples
We have established a standardized protocol for the sampling and handling of brain samples to
minimize potential confounding effects due to technical differences between laboratories and to
conduct blinded studies (http://www.fujita-hu.ac.jp/~cgbb/en/collaborative_research/index.html     ).

Animals and samples

Animals: Mice, rats, and other laboratory animals. For genetically engineered animals,
mutants and their wild-type littermates should be used.
Number of animals: ≧6 per group (identical genetic background, littermate), preferably.
Sex of animals: All males, all females, or balanced among groups if mixed.
Samples: Fresh-frozen whole brain.

Blinded study

The pH and lactate measurements were blinded: Upon sampling, the investigators were supposed
to randomize the animals regarding genotype and collect the brain samples in serially numbered
tubes. The investigators were asked to provide the genotype information and corresponding serial
numbers after the measurements for subsequent statistical analyses.

Brain sampling procedures

1. Sacrifice the mouse/rat by cervical dislocation followed by decapitation and remove the
entire brain from the skull. Do not immerse the brain in buffer solutions or water.

2. Cut the brain along the longitudinal fissure of the cerebrum.
3. Collect the left and right hemispheres in a tube that can be tightly capped like a cryotube

and seal the caps with Parafilm (to minimize the effect of carbon dioxide from dry ice on
the tissue pH during transport).

4. Quick freeze in liquid nitrogen and store at -80°C until shipped.
5. Transport the frozen brain on dry ice.

Measurements of pH and lactate
pH and lactate were measured as previously described (Hagihara et al., 2018     ). Briefly, snap-
frozen tissues were homogenized in ice-cold distilled H2O (5 ml per 500 mg of tissue). The pH of
the homogenates was measured using a pH meter (LAQUA F-72, HORIBA, Ltd., Kyoto, Japan)
equipped with a Micro ToupH electrode (9618S-10D, HORIBA, Ltd.) after three-point calibration at
pH 4.0, pH 7.0, and pH 9.0. The concentration of lactate in the homogenates was determined using
a multi-assay analyzer (GM7 MicroStat, Analox Instruments, London, UK) after calibration with 8.0
M lactate standard solution (GMRD-103, Analox Instruments). A 20-µl aliquot of the centrifuged
supernatant (14,000 rpm, 10 min) was used for the measurement.

https://doi.org/10.7554/eLife.89376.2
https://www.jax.org/
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Effect size (d) was calculated for each strain/condition and each measure (i.e., pH, lactate value,
and behavioral index) as followed:

The heat map was depicted using the R (version 3.5.2) gplots package.

Z-score transformation, a traditional method of data normalization for direct comparison between
different samples and conditions, was applied to each pH or lactate value using individual animal
data within each of strain according to the following formula:

where P is any pH or lactate and P1…Pn represent the aggregate measure of all pH or lactate
values.

Prediction analysis
We collected the comprehensive behavioral data as much as of animal models whose brain pH
and lactate levels were examined in this study. We obtained the following behavioral data from 24
animal models in an exploratory cohort from published papers, the Mouse Phenotype Database
(http://www.mouse-phenotype.org/     ) or in-house studies (Tables S3 and S4): number of transitions
in the light-dark transition test, percentage of immobility in the forced swim test, time spent in
open arm in the elevated-plus maze test, prepulse inhibition at 78- 110 dB and 74-110 dB, startle
response at 120 dB, distance traveled in the open field test, and correct percentage in the T-maze,
Y-maze, or eight-arm radial maze test. Literature searches were performed in PubMed and Google
Scholar using relevant keywords: name of strain or experimental condition, species (mice or rats),
and name of behavioral tests. Among the top hits of the search, data presented as actual values of
mean and SD or SEM were used with priority. For some behavioral measures, possible mean and
SD values were estimated from the graph presented in the paper. In the matrix of
strains/conditions and behavioral measures, those with any missing values were excluded,
resulting in nine behavioral measures from 24 strains/conditions of mouse models. The effect size
was calculated for each strain/condition and measure and used in the prediction analysis.

Leave-one-out cross-validation was employed to determine whether behavioral measures could
predict brain lactate levels for individual mouse strains. From the analyzed behavioral dataset of
24 mouse strains, one sample was selected and excluded to serve as the test data of the cross-
validation. Then, a multivariate linear regression model was trained on the remaining 23 samples
using a stepwise variable selection procedure with EZR software (version 1.38; Saitama Medical
Center, Jichi Medical University, Saitama, Japan) (Kanda, 2013     ), and the test sample was
predicted. This was repeated 24 times, with all samples selected once as the test data. Behavioral
measures selected at least once in the prediction model were considered as predictive behavioral
measures. Prediction performance was analyzed by evaluating the correlation between predicted
and actual values for the 24 mouse strains.

For comparability, we performed prediction analyses in a confirmatory cohort using the nine
behavioral indices mentioned above, resulting in the inclusion of 27 strains/conditions of animals
(Tables S3 and S4). In the prediction analyses, the same settings as used in an exploratory cohort
were applied to the confirmatory and combined cohorts.

https://doi.org/10.7554/eLife.89376.2
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To compare prediction accuracy across cohorts, the root mean squared error (RMSE) was
calculated using the following formula:

where n is the total number of samples, fi is the predicted value, and yi is the actual value.

Statistical analysis
pH and lactate data were analyzed by unpaired t-test or one-way analysis of variance (ANOVA) or
two-way ANOVA followed by post hoc Tukey’s multiple comparison test using GraphPad Prism 8
(version 8.4.2; GraphPad Software, San Diego, CA). Correlation analysis was performed using
Pearson’s correlation coefficient method.
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Reviewer #1 (Public Review):

Summary
In this manuscript, Hagihara et al. characterized the relationship between the changes in
lactate and pH and the behavioral phenotypes in different animal models of neuropsychiatric
disorders at a large-scale level. The authors have previously reported that increased lactate
levels and decreased pH are commonly observed in the brains of five genetic mouse models
of schizophrenia (SZ), bipolar disorder (BD), and autism spectrum disorder (ASD). In this
study, they expanded the detection range to 109 strains or conditions of animal models,
covering neuropsychiatric disorders and neurodegenerative disorders. Through statistical
analysis of the first 65 strains/conditions of animal models which were set as exploratory
cohort, the authors found that most strains showed decreased pH and increased lactate levels
in the brains. There was a significant negative correlation between pH and lactate levels both
at the strain/condition level and the individual animal level. Besides, only working memory
was negatively correlated with brain lactate levels. These results were successfully duplicated
by studying the confirmative cohort, including 44 strains/conditions of animal models. In all
strains/conditions, the lactate levels were not correlated with age, sex, or storage duration of
brain samples.

Strengths
1. The manuscript is well-written and structured. In particular, the discussion is really nice,
covering many potential mechanisms for the altered lactate levels in these disease models.
2. Tremendous efforts were made to recruit a huge number of various animal models, giving
the conclusions sufficient power.

Weaknesses
1. The biggest concern of this study is the limited novelty. The point of "altered pH and/or
lactate levels in the brains from human and rodent animals of neuropsychiatric disorders"
has been reported by the same lab and other groups in many previous papers.
2. This study is mostly descriptive, lacking functional investigations. Although a larger cohort
of animal models were studied which makes the conclusion more solid, limited conceptual
advance is contributed to the relevant field, as we are still not clear about what the altered
levels of pH and lactate mean for the pathogenesis of neuropsychiatric disorders.
3. The experiment procedure is also a concern. The brains from animal models were acutely
collected without cardiac perfusion in this study, which suggests that resident blood may
contaminate the brain samples. The lactate is enriched in the blood, making it a potential
confounded factor to affect the lactate levels as well as pH in the brain samples.
4. The lactate and pH levels may also be affected by other confounded factors, such as
circadian period, and locomotor activity before the mice were sacrificed. This should also be
discussed in the paper.
5. Another concern is the animal models. Although previous studies have demonstrated that
dysfunctions of these genes could cause related phenotypes for certain disorders, many of
them are not acknowledged by the field as reliable disease models. Besides, gene deficiency
could also cause many known or unknown unrelated phenotypes, which may contribute to
the altered levels of lactate and pH, too. In this circumstance, the conclusion "pH and lactate
levels are transdiagnostic endophenotype of neuropsychiatric disorders" is somewhat
overstated.
6. The negative correlationship between pH and lactate is rather convincing. However, how
much the contribution of lactate to pH is not tested. In addition, regarding pH and lactate,
which factor contributes most to the pathogenesis of neuropsychiatric disorders is also
unclear. These questions may need to be addressed in the future study.
7. The authorship is open to question. Most authors listed in this paper may only provide
mice strains or brain samples. Maybe it is better just to acknowledge them in the
acknowledgements section.
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8. The last concern is about the significance of this study. Although the majority of strains
showed increased lactate, some still showed decreased lactate levels in the brains. These
results suggested that lactate or pH is an endophenotype for neuropsychiatric disorders, but
it is hard to serve as a good diagnostic index as the change is not unidirectional in different
disorders. In other words, the relationship between lactate level and neuropsychiatric
disorders is not exclusive.

https://doi.org/10.7554/eLife.89376.2.sa1

Reviewer #2 (Public Review):

Hagihara et al. conducted a study investigating the correlation between decreased brain pH,
increased brain lactate, and poor working memory. They found altered brain pH and lactate
levels in animal models of neuropsychiatric and neurodegenerative disorders. Their study
suggests that poor working memory performance may predict higher brain lactate levels.

However, the study has some significant limitations. One major concern is that the authors
examined whole-brain pH and lactate levels, which might not fully represent the complexity
of disease states. Different brain regions and cell types may have distinct protein and
metabolite profiles, leading to diverse disease outcomes. For instance, certain brain regions
like the hippocampus and nucleus accumbens exhibit opposite protein/signaling pathways in
neuropsychiatric disease models.

Moreover, the memory tests used in the study are specific to certain brain regions, but the
authors did not measure lactate levels in those regions. Without making lactate
measurements in brain-regions and cell types involved in these diseases, any conclusions
regarding the role of lactate in CNS diseases is premature.

Additionally, evidence suggests that exogenous treatment with lactate has positive effects,
such as antidepressant effects in multiple disease models (Carrard et al., 2018, Carrard et al.,
2021, Karnib et al., 2019, Shaif et al., 2018). It also promotes learning, memory formation,
neurogenesis, and synaptic plasticity (Suzuki et al., 2011, Yang et al., 2014, Weitian et al., 2015,
Dong et al., 2017, El Hayek et al. 2019, Wang et al., 2019, Lu et al., 2019, Lev-Vachnish et a.l,
2019, Descalzi G et al., 2019, Herrera-López et al., 2020, Ikeda et al., 2021, Zhou et al.,
2021,Roumes et al., 2021, Frame et al., 2023, Akter et al., 2023).

In conclusion, the relevance of total brain pH and lactate levels as indicators of the observed
correlations is controversial, and evidence points towards lactate having more positive rather
than negative effects. It is important that the authors perform studies looking at brain-region-
specific concentrations of lactate and that they modulate lactate levels (decrease) in animal
models of disease to validate their conclusions. It is also important to consider the above-
mentioned studies before concluding that "altered brain pH and lactate levels are rather
involved in the underlying pathophysiology of some patients with neuropsychiatric
disorders" and that "lactate can serve as a potential therapeutic target for neuropsychiatric
disorders".

https://doi.org/10.7554/eLife.89376.2.sa0
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Summary

In this manuscript, Hagihara et al. characterized the relationship between the changes in
lactate and pH and the behavioral phenotypes in different animal models of
neuropsychiatric disorders at a large-scale level. The authors have previously reported
that increased lactate levels and decreased pH are commonly observed in the brains of
five genetic mouse models of schizophrenia (SZ), bipolar disorder (BD), and autism
spectrum disorder (ASD). In this study, they expanded the detection range to 109 strains
or conditions of animal models, covering neuropsychiatric disorders and
neurodegenerative disorders. Through statistical analysis of the first 65
strains/conditions of animal models which were set as exploratory cohort, the authors
found that most strains showed decreased pH and increased lactate levels in the brains.
There was a significant negative correlation between pH and lactate levels both at the
strain/condition level and the individual animal level. Besides, only working memory was
negatively correlated with brain lactate levels. These results were successfully duplicated
by studying the confirmative cohort, including 44 strains/conditions of animal models. In
all strains/conditions, the lactate levels were not correlated with age, sex, or storage
duration of brain samples.

Strengths

1. The manuscript is well-written and structured. In particular, the discussion is really nice,
covering many potential mechanisms for the altered lactate levels in these disease
models.

1. Tremendous efforts were made to recruit a huge number of various animal models,
giving the conclusions sufficient power.

We are grateful to Reviewer #1 for the positive evaluation of our manuscript. As indicated in
the responses that follow, we have taken all the comments and suggestions made by the
reviewer into account in the revised version of our paper.

Weaknesses

1. The biggest concern of this study is the limited novelty. The point of "altered pH and/or
lactate levels in the brains from human and rodent animals of neuropsychiatric
disorders" has been reported by the same lab and other groups in many previous
papers.

The previous study mentioned by the reviewer evaluated a small number of animal models
of psychiatric disorders. The novelty of this study is underscored by two key findings: 1) the
generality of changes in brain pH and lactate levels across a diverse range of disease models,
and 2) the association of these phenomenon with specific behaviors. First, this large-scale
animal model study revealed that alterations in brain pH/lactate levels can be found in
approximately 30% of the animal models examined. This generality suggests a common basis
in the neuropathophysiology of not only schizophrenia, bipolar disorder, and ASD, but also of
Alzheimer’s disease (APP-J20 Tg mice), Down’s syndrome (Ts1Cje mice), Mowat–Wilson
syndrome (Zeb2 KO mice), Dravet syndrome (Scn1a-A1783V KI mice), tuberous sclerosis
complex (Tsc2 KO mice), Ehlers-Danlos syndrome (Tnxb KO mice), and comorbid depression
in diabetes (streptozotocin-treated mice) and colitis (dextran sulfate sodium-treated mice).
Secondly, this study demonstrated that these phenomenon in the brain are primarily
associated with working memory impairment over depression- and anxiety-related
behaviors. Importantly, developing these hypotheses in an exploratory cohort of animals and

https://doi.org/10.7554/eLife.89376.2


Hideo Hagihara et al., 2023 eLife. https://doi.org/10.7554/eLife.89376.2 52 of 63

confirming them in an independent cohort within this study enhances the robustness and
reliability of our hypotheses, which we believe are equally crucial as their novelty.
Accordingly, we have revised the discussion section as follows (page 31, line 7):

Original text

"We performed a large-scale analysis of brain pH and lactate levels in 109 animal models of
neuropsychiatric disorders, which revealed the diversity of brain energy metabolism among
these animal models. Some strains of mice that were considered models of different diseases
showed similar patterns of changes in pH and lactate levels. Specifically, the SZ/ID models
(Ppp3r1 KO, Nrgn KO mice, and Hivep2 KO mice), BD/ID model (Camk2a KO mice), ASD model
(Chd8 KO mice), depression models (mice exposed to social defeat stress, corticosterone-
treated mice, and Sert KO mice), AD model (APP-J20 Tg mice), and DM model (Il18 KO and
STZ-treated mice) commonly exhibited decreased brain pH and increased lactate levels."

Revised text

"We performed a large-scale analysis of brain pH and lactate levels in 109 animal models of
neuropsychiatric disorders, which revealed the diversity of brain energy metabolism among
these animal models. The key findings of this study are as follows: 1) the generality of
changes in brain pH and lactate levels across a diverse range of disease models, and 2) the
association of these phenomenon with specific behaviors. First, this large-scale animal model
study revealed that alterations in brain pH/lactate levels can be found in approximately 30%
of the animal models examined. This generality suggests a common basis in the
neuropathophysiology of not only schizophrenia, bipolar disorder, and ASD, but also of
Alzheimer’s disease (APP-J20 Tg mice), Down’s syndrome (Ts1Cje mice), Mowat–Wilson
syndrome (Zeb2 KO mice), Dravet syndrome (Scn1a-A1783V KI mice), tuberous sclerosis
complex (Tsc2 KO mice), Ehlers-Danlos syndrome (Tnxb KO mice), and comorbid depression
in diabetes (streptozotocin-treated mice) and colitis (dextran sulfate sodium-treated mice).
Secondly, this study demonstrated that these phenomenon in the brain are primarily
associated with working memory impairment over depression- and anxiety-related
behaviors. Importantly, developing these hypotheses in an exploratory cohort of animals and
confirming them in an independent cohort within this study enhances the robustness and
reliability of our hypotheses."

1. This study is mostly descriptive, lacking functional investigations. Although a larger
cohort of animal models were studied which makes the conclusion more solid, limited
conceptual advance is contributed to the relevant field, as we are still not clear about
what the altered levels of pH and lactate mean for the pathogenesis of neuropsychiatric
disorders.

We agree with the reviewer’s comment. To address this issue, it is necessary to
comprehensively identify brain regions and cell types responsible for pH and lactate changes
in each strain/condition of animals, as these may differ among them. Subsequently, based on
such findings, we can then proceed with functional investigations that specifically target the
identified brain regions/cell types. However, conducting such investigations would require a
significant amount of time to complete, approximately 2–3 years, and is beyond the scope of
this study. Therefore, we would like to conduct such studies in the future. We have mentioned
this limitation by revising the discussion section of this study as follows (page 43, line 5):

Original text

"Because we used whole brain samples to measure pH and lactate levels, we could not
determine whether the observed changes in pH and/or lactate levels occurred ubiquitously
throughout the brain or selectively in specific brain region(s) in each strain/condition of the
models. Indeed, brain region-specific increases in lactate levels were observed in human
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patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate
levels were observed in whole-brain measurements in mice with chronic social defeat stress
(Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial
prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in
animal models in which undetectable changes were observed in the present study. This could
be due to the masking of such changes in the analysis when using whole-brain samples.
Further studies are needed to address this issue by measuring microdissected brain samples
and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes
(Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

Revised text:

"The major limitations of this study include the absence of analyses specific to brain regions
or cell types and the lack of functional investigations. Because we used whole brain samples
to measure pH and lactate levels, we could not determine whether the observed changes in
pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific
brain region(s) in each strain/condition of the models. It is known that certain molecular
expression profiles and signaling pathways display brain region-specific alterations, and in
some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al.,
2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in
lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014).
Furthermore, while increased lactate levels were observed in whole-brain measurements in
mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate
levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has
been reported that the basal intracellular pH differs between neurons and astrocytes (lower
in astrocytes than in neurons), and their responsiveness to conditions simulating neural
hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo
et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-
specific changes may occur even in animal models in which undetectable changes were
observed in the present study. This could be due to the masking of such changes in the
analysis when using whole-brain samples. Given the assumption that the brain regions and
cell types responsible for pH and lactate changes vary across different strains/conditions,
comprehensive studies are needed to thoroughly examine this issue for each animal model
individually. This can be achieved through techniques such as evaluating microdissected
brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes
(Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently,
based on such findings, it is also necessary to conduct functional analyses for each model
animal by manipulating pH or lactate levels in specific brain regions/cell types and
evaluating behavioral phenotypes relevant to neuropsychiatric disorders."

1. The experiment procedure is also a concern. The brains from animal models were acutely
collected without cardiac perfusion in this study, which suggests that resident blood may
contaminate the brain samples. The lactate is enriched in the blood, making it a potential
confounded factor to affect the lactate levels as well as pH in the brain samples.

We thank the reviewer for pointing this out. We have discussed this issue as follows (page 45,
line 4):

We also note that there are several potential confounding factors in this study. The brain
samples analyzed in this study contained cerebral blood. The cerebral blood volume is
estimated to be approximately 20–50 μl/g in human and feline brains (Leenders et al., 1990;
van Zijl et al., 1998). When we extrapolate these values to murine brains, it would imply that
the proportion of blood contamination in the brain homogenates analyzed is 0.2–0.6%.
Additionally, lactate concentrations in the blood are two to three times higher than those in
the brains of mice (Béland-Millar et al., 2017). Therefore, even if there were differences in the
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amount of resident blood in the brains between control and experimental animals, the
impact of such differences on the lactate measurements would likely be minimal.

1. The lactate and pH levels may also be affected by other confounded factors, such as
circadian period, and locomotor activity before the mice were sacrificed. This should also
be discussed in the paper.

Following the reviewer’s suggestion, we have discussed the matter as follows (page 45, line
12): Other confounding factors include circadian variation and locomotor activity before the
brain sampling. Lactate levels are known to exhibit circadian rhythm in the rodent cortex,
transitioning gradually from lower levels during the light period to higher levels during the
dark period (Dash et al., 2012; Shram et al., 2002; Wallace et al., 2022). The variation in the
times of sample collection during the day was basically kept minimized within each
strain/condition of animals. However, the sample collection times were not explicitly
matched across the different laboratories, which may contribute to variations in the baseline
control levels of pH and lactate among different strains/conditions of animals (Table S3). In
addition, motor activity and wake/sleep status immediately before brain sampling can also
influence brain lactate levels (Neylor et al., 2012; Shram et al., 2002). These factors have the
potential to act as confounding variables in the measurement of brain lactate and pH in
animals.

1. Another concern is the animal models. Although previous studies have demonstrated
that dysfunctions of these genes could cause related phenotypes for certain disorders,
many of them are not acknowledged by the field as reliable disease models. Besides,
gene deficiency could also cause many known or unknown unrelated phenotypes, which
may contribute to the altered levels of lactate and pH, too. In this circumstance, the
conclusion "pH and lactate levels are transdiagnostic endophenotype of neuropsychiatric
disorders" is somewhat overstated.

We thank the reviewer for pointing this out. We should have taken this issue into
consideration. Accordingly, we have discussed this issue as the limitation of this study in the
discussion section as follows (page 34, line 14):

"While we analyzed 109 strains/conditions of animals, we included both those that are widely
recognized as animal models for specific neuropsychiatric disorders and those that are not.
For example, while interleukin 18 (Il18) KO mice and mitofusin 2 (hMfn2-D210V) Tg mice
exhibited changes in pH and lactate levels, the evidence that these genes are associated with
specific neuropsychiatric disorders is limited. However, these strains of mice exhibited
behavioral abnormalities related to neuropsychiatric disorders, such as depressive-like
behaviors and impaired working memory (Ishikawa et al., 2019, 2021; Yamanishi et al., 2019).
Furthermore, these mice showed maturation abnormality in the hippocampal dentate gyrus
and neuronal degeneration due to mitochondrial dysfunction, respectively, suggesting
conceptual validity for utilization as animal models for neuropsychiatric and
neurodegenerative disorders (Cunnane, et al., 2021; Burté et al., 2015; Hagihara et al., 2013,
2019). In contrast, mice with heterozygous KO of the synaptic Ras GTPase-activating protein 1
(syngap1), whose mutations have been identified in human patients with ID and ASD, showed
an array of behavioral abnormalities relevant to the disorders (Komiyama et al., 2002;
Nakajima et al., 2019), but did not show changes in brain pH or lactate levels. Therefore,
while changes in brain pH and lactate levels could be transdiagnostic endophenotypes of
neuropsychiatric disorders, they might occur depending on the subpopulation due to the
distinct genetic and environmental causes or specific disease states in certain disorders."

Regarding the latter point suggested by the reviewer, we consider that alterations in brain pH
and lactate levels occur, whether they are a direct and known consequence or indirect and
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unknown ones of genetic modifications. We have proposed that genetic modifications, along
with environmental stimulations, may induce various changes, which subsequently converge
toward specific endophenotypes in the brain, such as neuronal hyperexcitation,
inflammation, and maturational abnormalities (Hagihara et al., 2013; Yamasaki et al., 2008).
The findings of this study, demonstrating the commonality of alteration of brain pH and
lactate levels, align with this concept, suggesting that these alterations could serve as brain
endophenotypes in multiple neuropsychiatric disorders. We have revised the discussion
section as follows (page 42, line 8):

Original text

"These findings suggest that the observed increase in lactate production and subsequent
decrease in pH in whole-brain samples may be attributed to the hyperactivity of specific
neural circuits in a subset of the examined animal models."

Revised text

"These findings suggest that neuronal hyperexcitation may be one of the common factors
leading to increased lactate production and decreased pH in the brain. We consider that
alterations in brain pH and lactate levels occur, whether they are a direct and known
consequence or indirect and unknown ones of genetic modifications. We have proposed that
genetic modifications, along with environmental stimulations, may induce various changes,
which subsequently converge toward specific endophenotypes in the brain, such as neuronal
hyperexcitation, inflammation, and maturational abnormalities (Hagihara et al., 2013;
Yamasaki et al., 2008). The findings of this study, demonstrating the commonality of
alterations in brain pH and lactate levels, align with this concept and suggest that these
alterations could serve as brain endophenotypes in multiple neuropsychiatric disorders."

1. The negative correlationship between pH and lactate is rather convincing. However, how
much the contribution of lactate to pH is not tested. In addition, regarding pH and
lactate, which factor contributes most to the pathogenesis of neuropsychiatric disorders
is also unclear. These questions may need to be addressed in the future study.

To estimate the degree of contribution of lactate to pH, we determined the contribution ratio
using the regression coefficient within a linear regression model applied to a combined
cohort. The results showed that 33.2% of changes in pH may be explained by changes in
lactate level. We have added the following text in the Results section (page 28, line 7).

The contribution ratio of lactate to pH, calculated based on the regression coefficient in a
linear regression model, was 33.2% at the individual level, suggesting a moderate level of
contribution.

Regarding the latter suggestion, we would like to address the issue in the future study.
Accordingly, we have added the following sentence in the discussion section (page 40, line
11):

Original text

"Further studies are needed to address these hypotheses by chronically inducing deficits in
mitochondrial function to manipulate endogenous lactate levels in a brain region-specific
manner and to analyze their effects on working memory."

Revised text

"Further studies are needed to address these hypotheses by chronically inducing deficits in
mitochondrial function to manipulate endogenous lactate levels in a brain region-specific
manner and to analyze their effects on working memory. It is also important to consider
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whether pH or lactate contributes more significantly to the observed behavioral
abnormalities."

1. The authorship is open to question. Most authors listed in this paper may only provide
mice strains or brain samples. Maybe it is better just to acknowledge them in the
acknowledgments section.

In the light of the current circumstances, wherein there is no universally agreed definition of
authorship (the Committee on Publication Ethics1), we acknowledge the reviewer’s concern.
Collecting a comprehensive range of mouse strains and brain samples is a fundamental
principle of this study. Maintaining mouse lines, breeding mice, genotyping, drug
administration, and preparation of brain samples each require specialized expertise.
Therefore, the scientific and technical contributions of individuals who only provided mouse
strains or brain samples was also crucial for obtaining the data essential to this study. In
accordance with the authorship guidelines outlined by the journal, which stipulate that “We
recommend that all researchers who made substantial or important contributions to the
design of a work, or the acquisition, analysis or interpretation of the data used in the paper,
be included as authors.”, we would like to retain their authorship status. Furthermore, we
ensured that all authors had read and approved the manuscript before submission, using
Google Forms.

1. GUIDELINES ON GOOD PUBLICATION PRACTICE, Committee on Publication Ethics
(COPE), https://publicationethics.org/files/u7141/1999pdf13.pdf

1. The last concern is about the significance of this study. Although the majority of strains
showed increased lactate, some still showed decreased lactate levels in the brains. These
results suggested that lactate or pH is an endophenotype for neuropsychiatric disorders,
but it is hard to serve as a good diagnostic index as the change is not unidirectional in
different disorders. In other words, the relationship between lactate level and
neuropsychiatric disorders is not exclusive.

As pointed out by the reviewer, whether brain pH and lactate levels increase or decrease
could vary among animal models. Such variation may represent subpopulations of patients
or specific disease states. Considering both increases and decreases in changes in pH and
lactate levels could be important to achieve that goal. Accordingly, we have revised the text as
follows:

Added text (page 33, line 12)

"Detecting changes in brain pH and lactate levels, whether resulting in an increase or
decrease due to their potential bidirectional alterations, using techniques such as MRS may
help the diagnosis, subcategorization, and identification of specific disease states of these
biologically heterogeneous and spectrum disorders, as has been shown for mitochondrial
diseases (Lin et al., 2003)."

Added text (page 35, line 14)

"Therefore, while changes in brain pH and lactate levels could be transdiagnostic
endophenotypes of neuropsychiatric disorders, they might occur depending on the
subpopulation due to the distinct genetic and environmental causes or specific disease states
in certain disorders."

https://doi.org/10.7554/eLife.89376.2
https://publicationethics.org/files/u7141/1999pdf13.pdf


Hideo Hagihara et al., 2023 eLife. https://doi.org/10.7554/eLife.89376.2 57 of 63

Reviewer #2 (Public Review):

Hagihara et al. conducted a study investigating the correlation between decreased brain
pH, increased brain lactate, and poor working memory. They found altered brain pH and
lactate levels in animal models of neuropsychiatric and neurodegenerative disorders.
Their study suggests that poor working memory performance may predict higher brain
lactate levels.

However, the study has some significant limitations. One major concern is that the
authors examined whole-brain pH and lactate levels, which might not fully represent the
complexity of disease states. Different brain regions and cell types may have distinct
protein and metabolite profiles, leading to diverse disease outcomes. For instance,
certain brain regions like the hippocampus and nucleus accumbens exhibit opposite
protein/signaling pathways in neuropsychiatric disease models.

We want to thank the reviewer for the valuable suggestions. To address this issue, it is
necessary to comprehensively identify brain regions and cell types responsible for pH and
lactate changes in each strain/condition of animals, as these may differ among them.
Subsequently, based on such findings, we can then proceed with functional investigations
that specifically target the identified brain regions/cell types. However, conducting such
investigations would require a significant amount of time to complete, approximately 2–3
years, and is beyond the scope of this study. Therefore, we would like to conduct such studies
in the future. We have mentioned this limitation by revising the discussion section of this
study as follows (page 43, line 5):

Original text

"Because we used whole brain samples to measure pH and lactate levels, we could not
determine whether the observed changes in pH and/or lactate levels occurred ubiquitously
throughout the brain or selectively in specific brain region(s) in each strain/condition of the
models. Indeed, brain region-specific increases in lactate levels were observed in human
patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate
levels were observed in whole-brain measurements in mice with chronic social defeat stress
(Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial
prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in
animal models in which undetectable changes were observed in the present study. This could
be due to the masking of such changes in the analysis when using whole-brain samples.
Further studies are needed to address this issue by measuring microdissected brain samples
and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes
(Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

Revised text

"The major limitations of this study include the absence of analyses specific to brain regions
or cell types and the lack of functional investigations. Because we used whole brain samples
to measure pH and lactate levels, we could not determine whether the observed changes in
pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific
brain region(s) in each strain/condition of the models. It is known that certain molecular
expression profiles and signaling pathways display brain region-specific alterations, and in
some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al.,
2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in
lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014).
Furthermore, while increased lactate levels were observed in whole-brain measurements in
mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate
levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has
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been reported that the basal intracellular pH differs between neurons and astrocytes (lower
in astrocytes than in neurons), and their responsiveness to conditions simulating neural
hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo
et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-
specific changes may occur even in animal models in which undetectable changes were
observed in the present study. This could be due to the masking of such changes in the
analysis when using whole-brain samples. Given the assumption that the brain regions and
cell types responsible for pH and lactate changes vary across different strains/conditions,
comprehensive studies are needed to thoroughly examine this issue for each animal model
individually. This can be achieved through techniques such as evaluating microdissected
brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes
(Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently,
based on such findings, it is also necessary to conduct functional analyses for each model
animal by manipulating pH or lactate levels in specific brain regions/cell types and
evaluating behavioral phenotypes relevant to neuropsychiatric disorders."

Moreover, the memory tests used in the study are specific to certain brain regions, but
the authors did not measure lactate levels in those regions. Without making lactate
measurements in brain-regions and cell types involved in these diseases, any conclusions
regarding the role of lactate in CNS diseases is premature.

Regarding the point about “lactate measurements in brain-regions and cell types involved in
these diseases,” please refer our responses provided above.

Additionally, evidence suggests that exogenous treatment with lactate has positive
effects, such as antidepressant effects in multiple disease models (Carrard et al., 2018,
Carrard et al., 2021, Karnib et al., 2019, Shaif et al., 2018). It also promotes learning,
memory formation, neurogenesis, and synaptic plasticity (Suzuki et al., 2011, Yang et al.,
2014, Weitian et al., 2015, Dong et al., 2017, El Hayek et al. 2019, Wang et al., 2019, Lu et
al., 2019, Lev-Vachnish et a.l, 2019, Descalzi G et al., 2019, Herrera-López et al., 2020,
Ikeda et al., 2021, Zhou et al., 2021,Roumes et al., 2021, Frame et al., 2023, Akter et al.,
2023).

We thank the reviewer for pointing out many references regarding the effects of lactate that
were not cited in our paper. We have since included these studies and discussed in more
detail the effect of lactate at molecular, cellular, and behavioral levels (page 39, line 11).

Original text

"Moreover, increased lactate may have a positive or beneficial effect on memory function to
compensate for its impairment, as lactate administration with an associated increase in brain
lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent
models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts
antidepressant effects in a mouse model of depression (Carrard et al., 2016)."

Revised text

"Moreover, increased lactate may have a positive or beneficial effect on memory function to
compensate for its impairment, as lactate administration with an associated increase in brain
lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent
models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts
antidepressant effects in a mouse model of depression (Carrard et al., 2021, 2016; Karnib et
al., 2019; Shaif et al., 2018). Lactate has also shown to promote learning and memory (Descalzi
G et al., 2019; Dong et al., 2017; Hayek et al. 2019; Lu et al., 2019; Roumes et al., 2021; Suzuki et
al., 2011), synaptic plasticity (Herrera-López et al., 2020; Yang et al., 2014; Zhou et al., 2021),
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adult hippocampal neurogenesis (Lev-Vachnish et al., 2019), and mitochondrial biogenesis
and antioxidant defense (Akter et al., 2023), while its effects on adult hippocampal
neurogenesis and learning and memory are controversial (Ikeda et al., 2021; Lev-Vachnish et
al., 2019; Wang et al., 2019)."

In conclusion, the relevance of total brain pH and lactate levels as indicators of the
observed correlations is controversial, and evidence points towards lactate having more
positive rather than negative effects. It is important that the authors perform studies
looking at brain-region-specific concentrations of lactate and that they modulate lactate
levels (decrease) in animal models of disease to validate their conclusions. it is also
important to consider the above-mentioned studies before concluding that "altered brain
pH and lactate levels are rather involved in the underlying pathophysiology of some
patients with neuropsychiatric disorders" and that "lactate can serve as a potential
therapeutic target for neuropsychiatric disorders".

Regarding the points about positive effects of lactate, measurement of brain-region-specific
lactate concentrations, and modulation of lactate levels, please refer to our responses
provided earlier. The points raised by the reviewer are important and should be addressed in
future studies.

Reviewer #2 (Recommendations For The Authors):

Measure lactate in specific brain regions. The whole brain measurements are not
relevant to the disease states.

We thank the reviewer for pointing this out. We totally agree with the reviewer’s comment
and recognize that the lack of investigations in specific brain regions is one of the major
limitations of this study. To address this issue, it is necessary to comprehensively identify
brain regions and cell types responsible for pH and lactate changes in each strain/condition
of animals, as these may differ among them. Subsequently, based on such findings, we can
then proceed with functional investigations that specifically target the identified brain
regions/cell types. However, conducting such investigations would require a significant
amount of time to complete, approximately 2–3 years, and is beyond the scope of this study.
Therefore, we would like to conduct such studies in the future. We have mentioned this
limitation by revising the discussion section of this study as follows (page 43, line 5):

Original text

"Because we used whole brain samples to measure pH and lactate levels, we could not
determine whether the observed changes in pH and/or lactate levels occurred ubiquitously
throughout the brain or selectively in specific brain region(s) in each strain/condition of the
models. Indeed, brain region-specific increases in lactate levels were observed in human
patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate
levels were observed in whole-brain measurements in mice with chronic social defeat stress
(Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial
prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in
animal models in which undetectable changes were observed in the present study. This could
be due to the masking of such changes in the analysis when using whole-brain samples.
Further studies are needed to address this issue by measuring microdissected brain samples
and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes
(Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

Revised text:
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"The major limitations of this study include the absence of analyses specific to brain regions
or cell types and the lack of functional investigations. Because we used whole brain samples
to measure pH and lactate levels, we could not determine whether the observed changes in
pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific
brain region(s) in each strain/condition of the models. It is known that certain molecular
expression profiles and signaling pathways display brain region-specific alterations, and in
some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al.,
2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in
lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014).
Furthermore, while increased lactate levels were observed in whole-brain measurements in
mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate
levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has
been reported that the basal intracellular pH differs between neurons and astrocytes (lower
in astrocytes than in neurons), and their responsiveness to conditions simulating neural
hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo
et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-
specific changes may occur even in animal models in which undetectable changes were
observed in the present study. This could be due to the masking of such changes in the
analysis when using whole-brain samples. Given the assumption that the brain regions and
cell types responsible for pH and lactate changes vary across different strains/conditions,
comprehensive studies are needed to thoroughly examine this issue for each animal model
individually. This can be achieved through techniques such as evaluating microdissected
brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes
(Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently,
based on such findings, it is also necessary to conduct functional analyses for each model
animal by manipulating pH or lactate levels in specific brain regions/cell types and
evaluating behavioral phenotypes relevant to neuropsychiatric disorders."

Discuss in detail the studies that show the neuroprotective effects of lactate and
reconcile these with the authors' conclusions.

As suggested by the reviewer, we have discussed in more detail the positive effect of lactate at
molecular, cellular, and behavioral levels as below (page 39, line 11):

Original text

"Moreover, increased lactate may have a positive or beneficial effect on memory function to
compensate for its impairment, as lactate administration with an associated increase in brain
lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent
models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts
antidepressant effects in a mouse model of depression (Carrard et al., 2016)."

Revised text

"Moreover, increased lactate may have a positive or beneficial effect on memory function to
compensate for its impairment, as lactate administration with an associated increase in brain
lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent
models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts
antidepressant effects in a mouse model of depression (Carrard et al., 2021, 2016; Karnib et
al., 2019; Shaif et al., 2018). Lactate has also shown to promote learning and memory (Descalzi
G et al., 2019; Dong et al., 2017; Hayek et al. 2019; Lu et al., 2019; Roumes et al., 2021; Suzuki et
al., 2011), synaptic plasticity (Herrera-López et al., 2020; Yang et al., 2014; Zhou et al., 2021),
adult hippocampal neurogenesis (Lev-Vachnish et al., 2019), and mitochondrial biogenesis
and antioxidant defense (Akter et al., 2023), while its effects on adult hippocampal
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neurogenesis and learning and memory are controversial (Ikeda et al., 2021; Lev-Vachnish et
al., 2019; Wang et al., 2019)."

Conduct experiments whereby you decrease/deplete/modulate lactate levels in
animal models and show that there is amelioration of the symptoms.

Regarding this point, kindly refer to the responses we provided in the first comment from the
reviewer. We have mentioned this limitation by revising the discussion section of this study
as follows (page 43, line 5):

Original text

"Because we used whole brain samples to measure pH and lactate levels, we could not
determine whether the observed changes in pH and/or lactate levels occurred ubiquitously
throughout the brain or selectively in specific brain region(s) in each strain/condition of the
models. Indeed, brain region-specific increases in lactate levels were observed in human
patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate
levels were observed in whole-brain measurements in mice with chronic social defeat stress
(Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial
prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in
animal models in which undetectable changes were observed in the present study. This could
be due to the masking of such changes in the analysis when using whole-brain samples.
Further studies are needed to address this issue by measuring microdissected brain samples
and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes
(Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

Revised text:

"The major limitations of this study include the absence of analyses specific to brain regions
or cell types and the lack of functional investigations. Because we used whole brain samples
to measure pH and lactate levels, we could not determine whether the observed changes in
pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific
brain region(s) in each strain/condition of the models. It is known that certain molecular
expression profiles and signaling pathways display brain region-specific alterations, and in
some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al.,
2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in
lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014).
Furthermore, while increased lactate levels were observed in whole-brain measurements in
mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate
levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has
been reported that the basal intracellular pH differs between neurons and astrocytes (lower
in astrocytes than in neurons), and their responsiveness to conditions simulating neural
hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo
et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-
specific changes may occur even in animal models in which undetectable changes were
observed in the present study. This could be due to the masking of such changes in the
analysis when using whole-brain samples. Given the assumption that the brain regions and
cell types responsible for pH and lactate changes vary across different strains/conditions,
comprehensive studies are needed to thoroughly examine this issue for each animal model
individually. This can be achieved through techniques such as evaluating microdissected
brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes
(Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently,
based on such findings, it is also necessary to conduct functional analyses for each model
animal by manipulating pH or lactate levels in specific brain regions/cell types and
evaluating behavioral phenotypes relevant to neuropsychiatric disorders."
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Other corrections

Title page and Acknowledgements:

We have revised the affiliation information for the following co-authors: Drs. Anja Urbach8,
Mohamed Darwish19, 20, Keizo Takao20, 22, Bong-Kiun Kaang53, 54, Michihiro Igarashi74,
75, Rie Ohashi87-89, and Nobuyuki Shiina87-89.

Page 56, line 12:

The term ‘The International Brain pH Consortium’ has been corrected to ‘The International
Brain pH Project Consortium’.

Supplementary Table 1: Supplementary References:

1. Oota-Ishigaki A, Takao K, Yamada D, Sekiguchi M, Itoh M, Koshidata Y, et al. (2022):
Prolonged contextual fear memory in AMPA receptor palmitoylation-deficient mice.
Neuropsychopharmacology 47: 2150–2159.

We have updated the name of the mouse strain from “patDp” to “15q dup” throughout the
manuscript.

We have made the following revisions to enhance readability.

Page 24, line 9: According to a simple correlation analysis, working memory measures
(correct responses in the maze test) were significantly negatively correlated with brain
lactate levels (r = -0.76, P = 1.93 × 10-5; Figure 1F).

Page 27, line 1:

Revised text

"We found that working memory measures (correct responses in the maze test) were the
most frequently selected behavioral measures for constructing a successful prediction model
(Figure 2E), which is consistent with the results of the exploratory study (Figure 1E)."

Figure 1 legend:

Revised text

"(F–H) Scatter plot showing correlations between actual brain lactate levels and measures of
working memory (correct responses in the maze test) (F), the number of transitions in the
light/dark transition test (G), and the percentage of immobility in the forced swim test (H)."

Figure 2 legend:

Revised text

"(F–H) Scatter plots showing correlations between actual brain lactate levels and working
memory measures (correct responses in the maze test) (F), the acoustic startle response at 120
dB (G), and the time spent in dark room in the light/dark transition test (H)."

Page 30, line 2:

Original text

"The high to moderate-high pH/low to moderate-low lactate group included mouse models of
ASD or developmental delay, such as Shank2 KO, Fmr1 KO, BTBR, Stxbp1 KO, Dyrk1 KO, Auts2
KO, and patDp mice (Table S1, Figure S7)."
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Revised text

"The high pH/low lactate group and moderate-high pH/moderate-low lactate group included
mouse models of ASD or developmental delay, such as Shank2 KO, Fmr1 KO, BTBR, Stxbp1
KO, Dyrk1 KO, Auts2 KO, and 15q dup mice (Table S1, Figure S7)."

Page 40, line 7:

Original text

"Moreover, increased lactate levels may also be involved in behavioral changes other than
memory deficits such as anxiety."

Revised text

"Moreover, increased lactate levels may also be involved in behavioral changes other than
memory deficits, such as anxiety."
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